Piotr Sulewski
ARTICLE

(Polish) PDF

ABSTRACT

The first aim of this paper is to present the theory of the proposal of the author in the form of modular statistics for three-way contingency table 2×2×2 and examine its properties in relation to known “chi-squared statistics”. The second aim is to describe the procedure of generating the content of these tables using the bar method. The third aim is to propose the measure of untruthfulness of null hypothesis as well as to compare the quality of independence tests using their power. Critical values for all analyzed statistics were determined by simulation methods of Monte Carlo.

KEYWORDS

three-way contingency tables, modular statistics, independence test, bar method, Monte Carlo method

REFERENCES

Beh E. J., Davy P. J., (1998), Partitioning Pearson’s Chi-squared Statistic for a Completely Ordered Threeway Contingency Table, The Australian and New Zealand Journal of Statistics, 40, 465–477.

Cressie N., Read T., (1984), Multinomial Goodness-of-Fit Tests, Journal of the Royal Statistical Society. Series B (Methodological), 46 (3), 440–464.

Freeman M. F., Tukey J. W., (1950), Transformations Related to the Angular and the Square Root, Annals of Mathematical Statistics, 21, 607–611.

Goodman L., Kruskal W., (1954), Measures of Association for Cross Classifications, Journal of the American Statistical Association, 49, 732–764.

Gray L. N., Williams J. S., (1975), Goodman and Kruskal’s Tau b: Multiple and Partial Analogs, in: Proceedings of the Social Statistics Section, American Statistical Association.

Harshman R. A., (1970), Foundations of the PARAFAC Procedure: Models and Conditions for an Explanatory Multi-modal Factor Analysis, UCLA Working Papers in Phonetics, 16, 1–84.

Kullback S., (1959), Information Theory and Statistics, Wiley, New York.

Lombardo R., (2011), Three-way Association Measure Decompositions: The Delta index, Journal of Statistical Planning and Inference, 141, 1789–1799.

Lombardo R., Beh E. J., (2010), Simple and Multiple Correspondence Analysis for Ordinal-scale Variables Using Orthogonal Polynomials, Journal of Applied Statistics, 37 (12), 2101–2116.

Marcotorchino F., (1984), Utilisation des Comparaisons par Paires en Statistique des Contingences, Partie (I), Etude IBM F069, France.

Neyman J., (1949), Contribution to the Theory of the ?2 Test, Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, (Univ. of Calif. Press), 239–273.

Pearson K., (1900), On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be Reasonably Supposed to Have Arisen from Random Sampling, Philosophy Magazine Series, 5 (50), 157–172.

Sokal R. R., Rohlf F. J., (2012), Biometry: the principles and practice of statistics in biological research, Freeman, New York.

Sulewski P., (2013), Modyfikacja testu niezależności, Wiadomości Statystyczne, GUS, 10, 1–19.

Sulewski P., (2014), Statystyczne badanie współzależności cech typu dyskretne kategorie, Akademia Pomorska, Słupsk.

Sulewski P., (2015), Miary związku między cechami w tablicy trójdzielczej, Wiadomości Statystyczne, GUS, 1, 13–27.

Sulewski P., (2016a), Moc testów niezależności w tablicy dwudzielczej, Wiadomości Statystyczne, GUS, 8, 1–17.

Sulewski P., (2016b), Moc testów niezależności w tablicy dwudzielczej większej niż 2×2, Przegląd Statystyczny, 63 (2), 191–209.

Tucker L. R., (1963), Implications of Factor Analysis of Three-way Matrices for Measurement of Change, w: Harris C. W. (red.), In Problems in Measuring Change, 122–137.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0